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Abstract 

Vertices of molecular graphs (multigraphs with restricted vertex valences and edge 
multiplicities) are described by the so-called valence states - an ordered triple of non- 
negative integers that are equal to the number of edges with a given multiplicity that 
are incident with the vertex. For molecular graphs, which correspond to standard organic- 
chemistry compounds composed of H, C, N, and O atoms, there may appear only ten 
eligible valence states. In order to construct exhaustively all graphs assigned to a given 
sequence of valence states, it is advantageous to know under what condition the sequence 
is graphical. An existence theorem for sequences composed of eligible valence states 
to be graphical is proved. 

1. Introduction 

The problem of constructive enumeration of molecular graphs belongs to the 
interesting problems of mathematical chemistry. It is very important not only for 
computer-assisted structure elucidation [ 1,2], but also for computer-assisted synthesis 
design [3] and for verifications (or falsifications) of hypotheses concerning a relation 
between "topology" of molecular graphs and their properties [4,5]. 

Many effective methods for constructive enumeration have been elaborated 
and implemented on computers. One main problem in these techniques is the way 
of specification of the molecular graphs to be constructed. The simplest one is to 
specify the molecular graphs by the number of vertices and edges. Although this 
approach is very simple and straightforward, it neglects many structural details of 
graphs. 

In computer-assisted structure elucidation, another possible way is used for 
determining graphs, in which they are prescribed not only by the number of vertices 
but also by some subgraphs - molecular fragments - that have (not) to appear in 
constructed graphs [1 ]. This approach leads naturally to the technique of the so-called 
superatoms (supervertices) [ 1] that are in the final stage of constructive enumeration 
expanded to given subgraphs. The role of automorphism of prescribed subgraphs is 
usually ignored and the redundancy of resulting graphs is checked in the final stage 
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of enumeration. A possible way of avoiding these and other similar problems is to 
determine the molecular graphs by a prescribed sequence of valence states [6,7]. The 
main superiority of this method lies in the fact that valence states of vertices correspond 
to the simplest "fragments" with transparent chemical interpretation. 

Another interesting possibility to use the sequence of valence states is in the 
field of a reconstruction problem of topological indices [8]. The approach of topological 
indices belongs in mathematical chemistry to quite popular techniques used for the 
study of correlations between molecular graphs and their properties. Therefore, it 
seems that an inverse problem - to construct all graphs with the value of a given 
topological index from a prescribed interval - might be of interest for the prediction 
of molecular graphs endowed by a required property. Gordeeva and Zefirov [5] have 
attacked this reconstruction problem for the Randi6 topological indices [9]. The 
authors produced in an initial stage all sequences of valence states that may potentially 
give a required value of the index, and then an attempt is made to construct all graphs 
corresponding to the produced sequences. 

Conditions in computer-assisted structure elucidation due to data of some type 
of spectroscopy may be satisfied by several sequences of valence states of atoms. 
This is also true for some ranges of topological index values. It is not always certain 
whether there can exist molecular graphs composed of given atoms in prescribed 
valence states. As an example can serve a sequence of one four-valence carbon, one 
three-valence nitrogen, and three one-valence hydrogens. One may simply verify that 
there should not exist molecular graphs without multiple bonds containing only these 
atoms in given valence states. This means that when we are constructing molecular 
graphs composed of atoms in required valence states, it is vitally important to know 
the negative cases (non-graphical) in advance. For these cases we can omit the 
construction, which may be time-consuming even if it did not produce any molecular 
graphs. 

The purpose of this communication is to prove an existence theorem for 
sequences of eligible valence states to be graphical. The necessary and sufficient 
condition under which a sequence of valence states is graphical is formulated, i.e. 
a condition stating whether there exists a multigraph with the same sequence as that 
prescribed. If this condition is satisfied, a constructive enumeration of molecular 
graphs with a prescribed sequence of eligible valence states should provide a non- 
empty list of constructed graphs. 

2. Sequences of valence states 

Let G be the so-called molecular graph determined as a multigraph [10, 11] 
with a non-empty vertex set V(G) and an edge set E(G). A multiplicity of an edge 
e ~ E(G) is denoted by mul(e). The notion of multiplicity may be extended outside 
E(G); we then say an edge e ~ E(G) is of zero multiplicity. A valence of a vertex 
v ~ V(G), val(v), is a non-negative integer determined as a sum of multiplicities of 
all edges incident with the vertex. Finally, we shall always assume that the molecular 
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graph G contains at most triple edges and vertex valences, that are bounded from 
above by 4. A vertex with zero valence corresponds to an isolated vertex. These 
requirements considerably restrict the notion of  molecular graphs, now it is closely 
related to the usual meaning of structural formulae in organic chemistry. 

A valence state [6, 12, 13] of a vertex v e V(G) is determined as an ordered 
triple of non-negative integers, vs(v) = (nl, n2, n3), where the entry n i (for 1 < i < 3) 
is equal to the number of  i-tuple edges incident with the vertex v. Using these entries, 
a valence assigned to the vertex v is determined by val(v) = nl + 2n2 + 3n3. Since the 
valences are bounded from above by 4, entries of  valence states cannot be arbitrary 
non-negative integers, they are restricted by 0 < nl + 2n2 + 3n3 < 4. Solving this inequality 
for non-negative integers, we arrive at ten valence states, called the eligible valence 
states, displayed in fig. 1. 

L 

( 4,0,0 ) (3,0,0) ( 2,1,0 ) ( 2,0,0 ) 

(1,1,0) (1 ,0,1)  (1,0,0)  (0 ,2 ,0)  

(0,1,0) (0,0,1) 
Fig. 1. All possible eligible valence states that may appear in 
molecular graphs. Below each graphical representation of valence 
states, an ordered triple of non-negative integers is presented. 

Let E be a sequence of p eligible valence states 

E = (VSl, VS 2 . . . . .  VSp); (1) 

it will be called graphical if there exists a multigraph, composed o f p  vertices, with 
the same sequence of  valence states, seq(G) = E. If we would like to construct all 
multigraphs with the prescribed sequence of  valence states, then it is important to 
know, in advance, whether this sequence is graphical. In other words, if  a sequence 
E = (vsl, vs2 . . . . .  vsp) is given, then under what condition does a sequence E 
correspond to a multigraph? 
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We shall study a s impler  problem. Let G be a simple graph (without multi- 
edges) composed of  p vertices and q edges. Let its sequence of  vertex valences be 
denoted by 

seq(G) = H =(va l l ,  va12 . . . . .  vale), (2a) 

where [10, 11] 

p 

vali = 2q. (2b) 
i=l 

A necessary and sufficient condit ion for a sequence (2a) to be graphical was found 
by Havel [14] and Hakimi [15] (cf. also refs. [10,11]). 

THEOREM 1 

A sequence  Il  = (vale, val2 . . . . .  val e) of  non -nega t i ve  in tegers  wi th  
vail > val2 > . . .  >- val e, where v a l l <  p - 1 and p > 2, is graphical if  and only if the 
sequence r I '  = ( v a l  2 - 1, val3 - 1 . . . . .  Valvall+l -- 1, Valvall+2 . . . . .  vale) is graphical. 

This theorem allows us to suggest  a very simple recurrent algorithm for 
checking whether  a sequence of  non-negative integers is graphical [11]. 

We now retum to our original problem, namely to find a necessary and 
sufficient condit ion for sequence (1) to be graphical. Let us construct  from sequence 
(1) five sequences of  p non-negative integers: 

Hi = (n!l),n~ 2) . . . . .  n~ p)) (for i = 1,2,3), (3a) 

I l l :  = (nf 1) + 41),nf :) + n2 (2) . . . . .  nf e) + 4e)) ,  (3b) 

Ill3 = (n~ 1) + r~l),n~ 2) + 4 2) . . . . .  n~ e) + n~P)) • (3c) 

Sequence rI i was formed from the ith entries of  valence states of  the sequence E; 
sequence Ill2 (rI13) is composed  of  entries that are equal to the sum of  1st and 2nd 
(3rd) entries in valence  states of  E; formally,  we may  write Hi2 = rI1 + 1-I2 
(l-I13 = I l l  + rI3). 

THEOREM 2 

A sequence E = (vsl,  vs2 . . . . .  vs e) composed of  eligible valence states is 
graphical if and only if all sequences n 1, II2, I-I12, and 1-I13 are graphical. 

According to this theorem, a verification whether the sequence E = (VSl, vs2 . . . . .  vs e) 
is graphical may be done by applying separately the algorithm suggested with the 
aid of  theorem 1 [11] to all four sequences n .  If in this process some of  them are 
not  graphical, then the sequence E is not graphical either. 
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Example 1 

An application of theorem 2 is illustrated by the sequence composed of six 
eligible valence states, 

-2 = ((2, 1, 0), (2, 1, 0), (1, o, 1), (1, o, 1), (1, o, 0), (1, o, 0)). 

From this sequence of valence states, we form five sequences (see eqs. (3a)-(3c)): 

11~ = (2, 2, 1, 1, 1, l ) ,  

172 = (1, 1, 0, 0, 0, 0), 

II3 = (0, 0, 1, 1, 0, 0), 

1112 = Fll + I-I2 = (3, 3, 1, 1, 1, 1), 

1113 = 1-11 + 113 = (2, 2, 2, 2, 1, 1). 

seq (G) = 

/- w 

seq  (G 1 ) = ~]~'1 

seq (G12) = ff['12 

I • 

seq (G 2) = %[2 

"! 

seq (G 3) = 5['3 

\ 
/ 

seq(G13) = ffC13 

Fig. 2. An example of multigraph G assigned to the sequence =: specified in example 1; 
corresponding graphs GI, G z . . . . .  G13 assigned to sequences II 1, 112 . . . . .  111a 

(see example 1), respectively, are given in the lower part of the figure. 
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Applying the algorithm given in ref. [11], we verify that sequences H1, II2, I]12, 
and 1-I13 are graphical; hence, from theorem 2, the sequence E is graphical. An 
example of a multigraph with the sequence of valence states E and the corresponding 
simple graphs assigned to sequences FI is shown in fig. 2. 

3. Proof of theorem 2 

3.1. N~CESSARY CONDITION 

Let us assume that the sequence E is graphical, then there exists a multigraph 
with the sequence of valence states equal to E, i.e. seq(G) = E. From the multigraph 
G, we may unambiguously construct the following five simple graphs (without 
multi-edges). Graph G i ( fo r  i = 1, 2, 3) is created from G by deleting all edges with 
multiplicity other than i and the remaining multi-edges (if any) are substituted by 
single edges. Valence sequences of these three graphs G1, G2, and G 3 are equal to 
the sequences FI 1, H 2, and Ha, respectively. A graph G12 (G13) is created from the 
multigraph G by deleting all triple (double) edges, and double (triple) edges (if any) 
are substituted by single edges; a valence sequence of this graph is equal to 
II12 = I11 + lq 2 (1-I13 = I-I 1 + Ha), see fig. 2. Consequently, since the graphs G1, G2, G3, 
G12, and G~3 (unambiguously constructed from the multigraph G) have valence 
sequences I-II, I-I E, lq 3, 1-I12, and H13, respectively, these sequences are graphical. 

3.2. SUFFICIENT CONDITION 

Let us assume that the sequence HI is graphical, i.e. there exists a graph G 
such that seq(G) = H 1. Assuming that the sequence H 2 is also graphical, then the 
graph G may be enlarged so that, according to 1-12, double edges are introduced. 
When adding the double edges, the already placed single edges will not be considered 
as restraining, only the cases with non-eligible valence states are expelled. What we 
have to discuss now is a potential simultaneous appearance of single and double 
edges between pairs of vertices in G; such graphs will be called intruder graphs. 
Since the sequences H1 and H2 correspond to a sequence composed of eligible 
valence states only, we demonstrate that some part of them may be simply transformed 
to non-intruder graphs (with sequences 1-I1 and 1-I2) and the remaining ones (which 
could not be transformed to a non-intruder form) are rejected from our considerations 
by the assumption that the sequence FI12 is graphical. The intruder graphs with 
graphical sequences I71 and 1-I 2 are displayed in a schematic form in fig. 3. For 
eligible valence states, there exist three different cases in which a pair of vertices 
is adjacent simultaneously by single and double edges. Since sequences I-I12 assigned 
to "minimal" subgraphs induced by vertices lying over boxes in fig. 3 as well as 
by vertices that are adjacent with the previous ones, i.e. (2, 2), (3, 2, 1), (3, 3, 1, 1), 
and (3, 3, 2), are not graphical, there must exist other edges inside the box. When 
considering some new edges in the box, these schemes may produce three intruder 
graphs with non-graphical sequences H12, see fig. 4. All other possibilities produced 
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,W,////,///J 
(A) (B) /C) 

Fig. 3. Three schematic forms of intruder graphs in which a 
pair of vertices is adjacent simultaneously by single and double 
edges. The sequences 171 and I"I 2 assigned to these graphs are 
graphical. Shadowed rectangular blocks represent rests of graphs. 

w w ~ v  

Fig. 4. Intruder graphs derived from scheme C in fig. 3. 
For all these graphs, the sequence 1-112 is non-graphical. 

by these schemes can be transformed by an approach (initially used by Havel [14] 
in his proof of theorem 1) to a form of standard multigraphs composed of single 
and double edges. Let us assume that vertices vi and vj are adjacent simultaneously 
by single and double edges. Then there exists a single or double edge (taken from 
the box) adjacent with other vertices vk and 1)/such that pairs of  vertices vi, vk and 
vj, vt are not adjacent in G. The graph G is transformed into another graph by 
deleting the edges (vl, vj) and (Vk, Vt) and creating new edges (vi, vk) and (vj, vl). 
The resulting graph has the same valence sequences FI 1 and 1-I 2 as the original one, 
the vertices vi and vj are adjacent either by a single or double edge but not both 
of them, see fig. 5. Repeating the above procedure for all cases in which single and 

~ J l  ,, = v i v j  

v I v k v I v k 

Fig. 5. An illustrative example of Havel's procedure of removing edges 
(v i, vj) and (v k, vt) and creating new edges (v i, ok) and (vj, vt), where 
the initial and produced graphs have the same sequences 1-11 and 1-I 2. 
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double edges are simultaneously incident with pairs of vertices, we arrive at a non- 
intruder mult igraph G composed of  single and double edges and with sequences 1-I 1 
and 1-12. 

NONGRAPHICAL 

Fig. 6. Schematic form of intruder graphs in which a 
pair of vertices is adjacent simultaneously by single and 
triple edges. The shadowed block represents a component 
of an intruder graph; if this block is an empty graph, 
then a sequence H13 of this intruder graph is non-graphical. 

The only form of  intruder graphs allowed for eligible valence states, when 
triple edges are allowed (determined by a graphical sequence Ha), is displayed in fig. 
6. For this case, an analogous approach as for single and double edges is applicable, 
transforming an intruder graph in a proper multigraph with sequences HI, I]2, and Ha. 

A sequence H3 may be composed only from entries "1", that means any such 
sequence which has the sum of its members  equal to an even number  is graphical. 
Since the sequences l-I 1 and 1-I13 are graphical, they must  also have an even sum of  
their members .  Since Ha = I-1~3 - I-I1, the sum of members  of  Ha must  also be even. 
Therefore,  if 1-I 1 and 1-I13 are graphical, then I-I 3 must  also be graphical. In summary,  
we have proved that, if  sequences I-11, 1-I 2, FI~2, and FI~3 are graphical, then there 
exists a mult igraph G with seq(G) = E = (I11, 1-12, 173). []  

We would like to emphasize that theorem 2 cannot be generalized for multigraphs 
composed of  other valence states than eligible ones. Its proof  is based on the 
assumption that the used valence states are eligible. For instance, let us consider  
a sequence E = ((3, 1, 0), (2, 0, 0), (2, 0, 0), (1, 2, 0), (0, 1, 0)), where the first and 
fourth valence states are not eligible. Al though sequences H1 = (3, 2, 2, 1, 0), 
H2 = (1, 0, 0, 2, 1) and 1-I12 = (4, 2, 2, 3, 1) are graphical (a sequence 1-I13 should not 
be considered,  the sequence E does not contain triple edges), it is impossible to 
construct a multigraph which corresponds to E, see fig. 7. It seems that theorem 2 
remains valid if the set of eligible valence states is enlarged by further valence 
states containing only single edges or only double or triple edges. While these 
added valence states do not change the scheme of  our proof  of  theorem 2, we have 
to be very careful when the set of  eligible valence states is enlarged by valence 
states with mixed multiplicities of  edges. For instance, as follows from the above 
illustrative example,  valence states (3, 1, 0) and (1, 2, 0) may cause a failure of  
theorem 2. 
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w w 

w 

Fig. 7. An illustrative example of non-graphical 
sequence -= = ((3, 1, 0), (2, 0, 0), (2, 0, 0), (1, 2, 0), 
(0, 1, 0)) with graphical sequences 1-I 1, I"I 2, I"112. 

4. Applications 

Theorem 2 offers a simple way to construct all possible sequences of eligible 
valence states for multigraphs with a prescribed number of  vertices and single, 
double, and triple edges. If we have to enumerate molecular graphs specified by, 
for instance, the number of atoms, rings and multiple bonds, we generate all possible 
sequences of valence states corresponding to this specification. The resulting sequences 
are proper objects for determination of molecular graphs that have to be constructively 
enumerated. 

An algorithm for generation of  all possible sequences of eligible valence 
states can be easily implemented in a backtrack form. In tables 1 - 4  are given 
illustrative results for multigraphs composed of six vertices and a prescribed number 
of  single, double, and triple edges. 

We have to emphasize that we may produce sequences of  valence states that 
are graphical but realized by disconnected multigraphs only. For instance, a sequence 
E = ((2, 0, 0)3(0, 2, 0) 3) is obviously graphical but its only realization corresponds 
to a disconnected multigraph with two triangular components, which are composed 
of  single and double edges, respectively. Graph-theoretically [10, 11], the number 
of  vertices (p),  edges (q), cycles (c), and components (n) are mutually related by 
c = q - p + n; that is, fixing its two entries (e.g. p and q), we have only one restrictive 
condition for the remaining two entries (e.g. c and n). This means there may exist 
several feasible solutions of the above condition. 

For our illustrative example of multigraphs, composed of  six vertices, three 
single edges and three double edges, we obtain two feasible solutions, c = 1, n = 1 
and c = 2, n = 2, where the second solution can be realized by the triangles mentioned 
above. Summarizing our considerations, we may say that it is impossible to decide 
in advance whether a graphical sequence of  valence states is realized by disconnected 
graphs only. 

Fortunately, many of  such sequences are removed from our considerations by 
necessary conditions that are satisfied for disconnected multigraphs only. In particular, 
if  entries of  a given sequence may be separated into two or more disjoint classes 
that are composed either of  valence states with single, or double, or triple, or single 
and double edges in one class and triple edges in the other class, etc., then this 
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Table 1 

All possible graphical sequences of eligible valence states 
corresponding to six vertices and six single edges. 

No. Sequence 

1 

2 

3 

4 

5 

6 

(4, O, 0) 1 (3, O, 0) 1 (2, O, 0) 1 (1, O, 0) 3 

(4, O, 0) 1 (2, O, 0) 3 (1, O, 0) 2 

(3, O, O) 1 (2, O, 0) 4 (1, O, 0) 1 

(3, 0, 0) 2 (2, 0, 0) 2 (1, 0, 0) 2 

(3, 0, 0) 3 (1, 0, 0) 3 

(2, O, 0) 6 

Table 2 

All possible graphical sequences of eligible valence states corre- 
sponding to six vertices, five single edges, and one double edge. 

No. Sequence 

1 (4, O, 0) 1 (2, 1, O) 1 (2, O, O) 1 (1, O, 0) 2 (0, 1, 0) 1 

2 (4, O, 0) 1 (2, 1, 0) 1 (1, 1, 0) 1 (1, O, 0) 3 

3 (4, 0, 0) 1 (2, 0, 0) 1 (1, 1,0) 2 (1, 0, 0) 2 

4 (4, 0, 0) 1 (2, 0, 0) 2 (1, 1, 0) 1 (1, 0, 0) l (0, 1, 0) 1 

5 (3, 0, 0) 1 (2, 1, 0) 1 (2, 0, 0) 1 (1, 1, 0) 1 (1, 0, 0) 2 

6 (3, 0, 0) 1 (2, 1, 0) 1 (2, 0, 0) 2 (1, 0, 0) 1 (0, 1, 0) 1 

7 (3, 0, 0) 1 (2, 1, 0) 2 (1, 0, 0) 3 

8 (3, 0, 0) 1 (2, 0, 0) 2 (1, 1, 0) 2 (1, 0, 0) 1 

9 (3, 0, 0) 1 (2, 0, 0) 3 (1, 1, 0) 1 (0, 1, 0) 1 

10 (3, 0, 0) 2 (2, 1, 0) 1 (1, 0, 0) 2 (0, 1, 0) 1 

11 (3 ,0 ,0 )  2 (2 ,0 ,0)  1 (1, 1,0) 1 (1 ,0 ,0)  1 (0, 1,0) 1 

12 (3, 0, 0) 2 (1, 1, 0) 2 (1, 0, 0) 2 

13 (2, 1, 0) 1 (2, 0, 0) 3 (1, 1, 0) 1 (1, 0, 0) 1 

14 (2, 1, 0) 1 (2, 0, 0) 4 (0, 1, 0) 1 

15 (2, 1, 0) 2 (2, 0, 0) 2 (1, 0, 0) 2 

16 (2, 0, 0) 4 (1, 1, 0) 2 
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Table 3 

All possible graphical sequences of eligible valence states corresponding 
to six vertices, four single edges, one double edge, and one triple edge. 

No. Sequence 

1 (4, O, 0) 1 (1, 1, 0) 1 (1, O, 1) 2 (1, O, O) 1 (0, 1, O) ~ 

2 (4, O, O) ~ (1, 1, 0) 2 (1, O, 1) l (1, O, O) ~ (0, O, 1) 1 

3 (3, O, 0) 1 (2, 1, O) ~ (2, O, 0) 1 (1, O, 1) ~ (0, 1, O) 1 

(0, I, O) ~ 
4 (3, O, 0) 1 (2, 1, 0) 1 (1, 1, O) x (1, O, 1) a (1, O, 0) 1 

(0, O, 1) 1 

5 (3, O, 0) 1 (2, 1,0) 1 (1, O, 1) 2 (1, O, O) 1 (0, 1, O) 1 

6 (3, O, O) 1 (2, O, 0) 1 (1, 1, O) ~ (1, O, 1) 2 (0, 1, O) ~ 

7 (3, 0, 0) 1 (2, 0, 0) 1 (1, 0, 0) 2 (1, 0, 1) 1 (0, 0, 1) 1 

8 (3, O, O) 1 (1, 1, 0) 2 (1, O, 1) 2 (1, O, O) ~ 

9 (2, 1, 0) 1 (2, 0, 0) 1 (1, 1, 0) 1 (1, 0, 1) 2 (1, 0, 0) 1 

10 (2, 1, 0) 1 (2, O, 0) 2 (1, 1, 0) 1 (1, O, 1) 1 (0, O, 1) 1 

11 (2, 1, 0) 1 (2, O, 0) 2 (1, O, 1) 2 (0, 1, 0) 1 

12 (2, 1, 0) 2 (2, O, 0) 1 (1, O, 1) 1 (1, O, 0) 1 (0, O, 1) 1 

13 (2, 1, 0) 2 (1, O, 1) 2 (1, O, 0) 2 

14 (2, O, 0) 2 (1, 1, 0) 2 (1, O, 1) 2 

Table 4 

All possible graphical sequences of eligible valence states corre- 
sponding to six vertices, three single edges, and three double edges. 

No. Sequence 

1 (3, O, O) ~ (1, 1, 0) 2 (1, O, 1) ~ 

2 (3, O, 0) 1 (1, 1, 0) 3 (0, 2, O) 1 

3 (2, 1, 0) 1 (2, O, 0) 1 (1, 1, O) 1 

4 (2, 1, O) l (2, O, O) 1 (1, 1, 0) 2 

5 (2, 1, 0) 1 (2, O, 0) 2 (0, 2, 0) 2 

6 (2, 1, O) ~ (1, 1, O) 3 (1, O, O) 1 

7 (2, 1, O) ~ (1, 1, 0) 4 (0, 1, O) ~ 

8 (2, 1, 0) 2 (2, O, 0) 1 (0, 2, O) l 

9 (2, 1, O) 2 (1, 1, O) ~ (1, O, O) ~ 

10 (2, 1, 0) 2 (1, 1, 0) 2 (0, 1, 0) 2 

11 (2, 1, 0) 2 (1, O, 0) 2 (0, 2, 0) 2 

12 (2, 1, 0) 3 (0, 1, 0) 3 

13 (2, O, 0) 1 (1, 1, 0) 4 (0, 2, O) 1 

14 (2, O, 0) 2 (1, 1, 0) 2 (0, 2, O) 2 

15 (1, 1, 0) 6 

(0, 2, 0) 2 

(0, I, O) ~ 
(1, O, O) l (0, 2, 0) 2 

(0, 2, O) ~ (0, I, 0) I 

(0, 1, O) ~ 

(0, 2, O) ~ 

(0, 1, 0) 2 

(0, 2, O) ~ (0, 1, O) ~ 



364 V. Kvasni~ka, J. Pospichal, Existence theorem for molecular graphs 

sequence corresponds to multigraphs with the number of components greater than 
or equal to the number of classes. The above example of sequence E = ((2, 0, 0)3(0, 2, 0) 3) 
has two classes of valence states, i.e. multigraphs assigned to this sequence are 
disconnected with two components. In tables 1-4  are given only those sequences 
that are realized at least by one connected multigraph. 
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